Programming the Microsoft Agent Control

ActiveX™ Technology for Interactive Software Agents

�

Last updated: November 1997�Microsoft Corporation

Note: This document is provided for informational purposes only and Microsoft makes no warranties, either expressed or implied, in this document. The entire risk of the use or the results of this document remains with the user.

Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property rights. Microsoft, MS, MS-DOS, Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Contents

Introduction�Document Conventions�Accessing the Control in Web Pages�Accessing the Control from Visual Basic and Other Programming Languages�Accessing Microsoft Agent Services Directly�The Request Object�The Agent Control�The Characters Object�The AudioOutput Object�The SpeechInput Object�The CommandsWindow Object�The PropertySheet Object

Introduction

Although applications can write directly to the Microsoft Agent services using its automation server interfaces, Microsoft Agent also includes an ActiveX™ (OLE) control. The control supports easy programming using a scripting language such as Microsoft® Visual Basic® Scripting Edition (VBScript) or other languages that support the ActiveX control interface.

Document Conventions

This documentation uses the following typographical conventions:

Convention�Description��Sub, Visible, Caption�Words in bold with initial letter capitalized indicate keywords.��agent, String, Now�Italic words indicate placeholders for information you supply.��ENTER, F1�Words in all capital letters indicate filenames, key names, and key sequences.��Agent1.Commands.Enabled = True�Words in this font indicate code samples.��‘ This is a comment�An apostrophe (‘) indicates a code comment.��Agent1.Commands.Add "Test1", _�"Test 1", "test one"�A space and an underscore (_) continues a line of code.��[words or expression]�Items inside square brackets are optional.��This | That�A vertical bar indicates a choice between two or more items.��agent�The word "agent" in italics represents the name of the agent control you use.��The descriptions of programming interfaces in this document follow the conventions for Microsoft VBScript. However, they should be generally applicable to other languages as well.

Accessing the Control in Web Pages

To access the Microsoft Agent services from a Web page, use the HTML <OBJECT> tag within the <HEAD> or <BODY> element of the page, specifying the Microsoft CLSID (class identifier) for the control. In addition, use a CODEBASE parameter to specify the location of the Microsoft Agent installation file and its version number. The following example illustrates how to use the CODEBASE parameter to autodownload the English language version 1.5 of Microsoft Agent. For information about the current location of the Microsoft Agent installation file for specific language versions and the current release number available, see the Microsoft Agent download page (http://www.microsoft.com/workshop/prog/agent/agentdl.htm).

<OBJECT

classid="clsid:F5BE8BD2-7DE6-11D0-91FE-00C04FD701A5"

CODEBASE = "http://activex.microsoft.com/controls/agent/MSagent.exe#VERSION=1,5,0,0"

 id=Agent

>

</OBJECT>

Before any script on the page can access its services, Microsoft Agent must be installed on the system loading the page. If Microsoft Agent is not installed on the target system, Microsoft Internet Explorer will automatically download the Microsoft Agent server, data provider, and ActiveX control and ask the user whether to proceed with installation. Once installed, these three items do not have to be reinstalled unless the user uninstalls them. To begin using a character, you must also download its data using the Load and Get methods. For more information about the syntax for loading a character, see the Load method.

Note that you can also use the methods, properties, and events exposed by the browser to program the character; for example, to program its reaction to a button click. Consult the documentation for your browser to determine what features it exposes in its scripting model. For the Microsoft Internet Explorer, see the Scripting Object Model.

Supporting Microsoft Agent from a Web page requires Microsoft Internet Explorer version 3.0 or later. For other browsers, contact the supplier for information regarding their support for ActiveX.

Using VBScript

To program Microsoft Agent from VBScript, use the HTML <SCRIPT> tags. To access the programming interface, use the name of control you assign in the <OBJECT> tag, followed by the subobject (if any), the name of the method or property, and any parameters or values supported by the method or property:

agent[.object].Method parameter, [parameter]

agent[.object].Property = value

For events, include the name of the control followed by the name of the event and any parameters:

Sub agent_event (ByVal parameter[,ByVal parameter])

statements…

End Sub

You can also specify an event handler using the <SCRIPT> tag’s For…Event syntax:

<SCRIPT LANGUAGE=VBScript For=agent Event=event[(parameter[,parameter])]>

statements…

</SCRIPT>

Although Microsoft Internet Explorer supports this latter syntax, not all browsers do. For compatibility, use only the former syntax for events.

With VBScript 2.0, you can verify whether Microsoft Agent is installed by trying to create the object and checking to see if it exists. The following sample demonstrates how to check for the Agent control without triggering an auto-download of the control (as would happen if you included an <OBJECT> tag for the control on the page):

	

<!-- WARNING - This code requires VBScript 2.0.

It will always fail to detect the Agent control

in VbScript 1.x, because CreateObject doesn't work.

-->

<SCRIPT LANGUAGE=VBSCRIPT>

If HaveAgent() Then

		‘Microsoft Agent control was found.

document.write "<H2 align=center>Found</H2>"

Else

		‘Microsoft Agent control was not found.

document.write "<H2 align=center>Not Found</H2>"

End If

Function HaveAgent()

' This procedure attempts to create an Agent Control object.

' If it succeeds, it returns True.

' 	This means the control is available on the client.

' If it fails, it returns False.

' 	This means the control hasn't been installed on the client.

	Dim agent

	HaveAgent = False

	On Error Resume Next

	Set agent = CreateObject("Agent.Control.1")

	HaveAgent = IsObject(agent)

End Function

</SCRIPT>

You can download VBScript 2.0 and obtain further information on VBScript at the Microsoft Download site and the Microsoft VBScript site.

Using JavaScript and JScript

If you use JavaScript™ or Microsoft JScript™ to access Microsoft Agent’s programming interface, follow the conventions for this language for specifying methods or properties:

agent.object.Method (parameter)

agent.object.Property = value

JavaScript does not currently have event syntax for non-HTML objects. However, with Internet Explorer you can use the <SCRIPT> tag's For…Event syntax:

<SCRIPT LANGUAGE="JScript" FOR="object" EVENT="event()">

statements…

</SCRIPT>

Because not all browsers currently support this event syntax, you may want to use JavaScript only for pages that support Microsoft Internet Explorer or for code that does not require event handling.

The current release of JScript does not support collections. To access methods and properties of the Character object, use the Character method. Similarly, to access the properties of a Command object, use the Command method.

Accessing Speech Support for Microsoft Agent

Although Microsoft Agent’s services include support for speech recognition, a compatible speech engine must be installed to access Agent's speech recognition support. Your license for Microsoft Agent includes a license for the Microsoft Command and Control speech recognition engine when used as part of a Microsoft Agent client application.

To support automatic downloading and installation of Microsoft Command and Control from an HTML page, include a separate <OBJECT> tag specifying the CLSID of the engine. In addition, include a CODEBASE parameter to specify the location of the installation file as well as the version number, as shown in the following example. For the current location and version number to use for autodownloading the Microsoft Command and Control speech engine, consult the information posted on the Microsoft Agent download site at http://www.microsoft.com/workshop/prog/agent/agentdl.htm.

<OBJECT

classid="clsid:161FA781-A52C-11d0-8D7C-00A0C9034A7E"

CODEBASE = http://www.research.microsoft.com/research/srg/actcnc.exe#VERSION=3,0,0,1831

>

</OBJECT>

The license for Microsoft Command and Control does not permit redistribution of the speech engine independently. For information on licensing the engine separately from Microsoft Agent, contact the Microsoft Speech Research group e-mail alias: voicebug@microsoft.com. The Microsoft Command and Control engine is currently available only for English language input; however, other speech recognition vendors supporting the Microsoft Speech API may provide support for other languages. If you use another speech engine, contact its vendor for compatibility, installation, and licensing information.

Similarly, if you want to use Microsoft Agent’s synthesized speech services, you must install a compatible text-to-speech (TTS) speech engine for your character’s output. Your license for Microsoft Agent includes a license to use a special version of the Lernout & Hauspie® TruVoice engine, but only when used with Microsoft Agent.

To support automatic downloading and installation of this engine from an HTML page, include the engine’s CLSID in the <OBJECT> tag. In addition, include a CODEBASE parameter to specify the location of the installation file as well as the version number, such as shown in the following example. For the current location and version number to use for autodownloading the Lernout & Hauspie Text to Speech Engine for Microsoft Agent, consult the information posted on the Microsoft Agent download site at http://www.microsoft.com/workshop/prog/agent/agentdl.htm.

<OBJECT

classid="clsid:B8F2846E-CE36-11D0-AC83-00C04FD97575"

CODEBASE = "http://activex.microsoft.com/controls/agent/cgram.exe#VERSION=1,5,0,0"

>

</OBJECT>

This speech output engine supports only English language output. However, because Microsoft Agent uses the Microsoft Speech API, other languages may be available. If you want to use another compatible speech engine, contact its vendor for further information about their installation and licensing. Note that if you want to downloaded sound (.WAV) files for your character’s voice output, you do not have to install a TTS engine.

Accessing the Control from Visual Basic and Other Programming Languages

You can also use Microsoft Agent’s control from Visual Basic® and other programming languages. Make sure that the language fully supports the ActiveX control interface, and follow its conventions for adding and accessing ActiveX controls.

Accessing Microsoft Agent’s control from Visual Basic requires that you first create the control. The easiest way to do this is to place an instance of the control on a form. (You may have to add the control to your toolbox before adding it to your form.) Follow Visual Basic syntax for specifying methods, properties, or events. Using Microsoft Agent’s control with Visual Basic is very similar to using the control with VBScript, except that events in Visual Basic must include the data type of passed parameters. However, adding the Microsoft Agent control to a form will automatically include Microsoft Agent’s events with their appropriate parameters. For more advanced scenarios, such as creating an Agent control at run time, see the Connected property.

Most programming languages that support ActiveX controls follow conventions similar to Visual Basic. For programming languages that do not support object collections, you can use the Character method and Command method to access methods and properties of items in the collection.

Accessing Microsoft Agent Services Directly

If you are using C, C++, or Java™, you can access the Microsoft Agent server directly using its ActiveX (OLE) interfaces. For more information on these interfaces, see Programming the Microsoft Agent Server Interface.

The Agent Object Model

The Microsoft Agent Object Model consists of the following objects:

•	Request

•	Agent (control)

•	Characters (collection)

•	Character

•	Commands (collection)

•	Command

•	Balloon

•	SpeechInput

•	AudioOutput

•	CommandsWindow

•	PropertySheet

These objects are organized in the following hierarchy. (The dotted line following an object indicates that multiple objects can exist.)

�

Figure 3. The Agent Object

The Request Object

The server processes some methods, such as Load, Get, Play, and Speak, asynchronously. This enables your application code to continue while the method is completing. When a client application calls one of these methods, the control creates and returns a Request object for the request. You can use the Request object to track the status of the method by assigning an object variable to the method. In VBScript and Visual Basic, first declare an object variable:

	Dim MyRequest as Object

In VBScript, you don’t include the variable type in your declaration:

	Dim MyRequest

And use Visual Basic's Set statement to assign the variable to the method call:

	Set Request = agent.Characters("CharacterID").method (parameter[s])

This adds a reference to the Request object. The Request object will be destroyed when there are no more references to it. Where you declare the Request object and how you use it determines its lifetime. If the object is declared local to a subroutine or function, it will be destroyed when it goes out of scope; that is, when the subroutine or function is complete. If the object is declared globally, it will not be destroyed until either the program terminates or a new value (or a value set to "empty") is assigned to the object.

The Request object provides several properties you can query. For example, the Status property returns the current status of the request. You can use this property to check the status of your request:

	Dim MyRequest

	

	Set MyRequest = Agent1.Characters.Load ("Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf")

	If (MyRequest.Status = Pending) then

		'do something

	Else If (MyRequest.Status = Complete) then

		'do something right away

	End If

The Status property returns the status of a Request object as a Long integer value.

Status�Definition��0�Request successfully completed.��1�Request failed.��2�Request pending (in the queue, but not complete).��3�Request interrupted.��4�Request in progress.��The Request object also includes a Long integer value in the Number property that returns the error or cause of the Status code. If none, this value is zero (0). The Description property contains a string value that corresponds to the error number. If the string doesn't exist, Description contains "Application-defined or object-defined error".

For the values and meaning returned by the Number property, see Error Codes.

The server places animation requests in the specified character’s queue. This enables the server to play the animation on a separate thread, and your application's code can continue while animations play. If you create a Request object reference, the server automatically notifies you when an animation request has started or completed through the RequestStart and RequestComplete events. Because methods that return Request objects are asynchronous and may not complete during the scope of the calling function, declare your reference to the Request object globally.

The following methods can be used to return a Request object: GestureAt, Get, Hide, Interrupt, Load, MoveTo, Play, Show, Speak, Wait.

--

The Agent Control

Referencing the Agent control provides access to events and most other objects supported by Microsoft Agent. The Agent control also directly exposes its own set of properties.

Agent Control Properties

The following properties are directly accessed from the Agent control:

Connected, Name, Suspended

In addition, some programming environments may assign additional design-time or run-time properties. For example, Visual Basic adds Left, Index, Tag, and Top properties that define the location of the control on a form even though the control does not appear on the form’s page at run time.

Connected Property

Description

Returns or sets whether the current control is connected to the Microsoft Agent server.

Syntax

agent.Connected [= boolean]

Part�Description��boolean�A Boolean expression specifying whether the control is connected.

True The control is connected.

False The control is not connected.��

Remarks

In many situations, specifying the control automatically creates a connection with the Microsoft Agent server. For example, specifying the Microsoft Agent control’s CLSID in the <OBJECT> tag in a Web page automatically opens a server connection and exiting the page closes the connection. Similarly, for Visual Basic or other languages that enable you to drop a control on a form, running the program automatically opens a connection and exiting the program closes the connection. If the server isn’t currently running, it automatically starts.

However, if you want to create an Agent control at run time, you may also need to explicitly open a new connection to the server using the Connected property. For example, in Visual Basic you can create an ActiveX object at run time using the Set statement with the New keyword (or CreateObject function). While this creates the object, it will not create the connection to the server, so you must use the Connected property before any code that calls into Microsoft Agent’s programming interface, as shown in the following example:

	‘ Declare a global variable for the control

	Dim MyAgent as Agent

	‘ Create an instance of the control using New

	Set MyAgent = New Agent

	‘ Open a connection to the server

	MyAgent.Connected = True

	‘ Load a character

	MyAgent.Characters.Load "Genie", "C:\Some Directory\Genie.acs"

	‘ Display the character

	MyAgent.Characters("Genie").Show

Note that creating a control using this technique does not expose the Agent control’s events. In Visual Basic 5.0, you can access the control’s events by including the control in your project’s references, and use the WithEvents keyword in your variable declaration:

	Dim WithEvents agent as Agent

	‘ Create an instance of the control using New

	Set MyAgent = New Agent

Using WithEvents to create an instance of the Agent control at run time automatically opens the connection with the Microsoft Agent server. Therefore, you don’t need to include a Connected statement.

You can close your control’s connection to the server at run time by setting the Connected property to False. However, you must first release all references you defined to objects created by the server. In particular, you must release any references you created to character and command objects. In Visual Basic, you can disassociate a reference to an object by setting the reference to Nothing:

	Dim Genie as IAgentCtlCharacter

	

	Sub LoadCharacter

	‘ Load the character into the Characters collection

	Agent1.Characters.Load "Genie", _

	"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

	‘ Create a reference to the character

	Set Genie = Agent1.Characters("Genie")

	End Sub

	Sub CloseConnection

	‘ Release the reference to the character object

	Set Genie = Nothing

	‘ Close the connection with the server

	Agent1.Connected = False

	End Sub

Although you can reopen your connection by resetting the Connected property to True, not all information established with the server in the original connection will be preserved. For example, if you loaded a character, you will have to reload it again before you can play any of its animations.

Setting the Connected property to False does not destroy your instance of the control. You must use the syntax supported by your programming language for releasing the object. For example, in Visual Basic, you set the control to Nothing:

	Set Agent1 = Nothing

Attempting to query or set the Connected property before creating the control will raise an error.

--

Name Property

Description

Returns the name used in code to identify the control. This property is read-only at run time.

Syntax

agent.Name

Remarks

In some programming environments such as Visual Basic, adding the control automatically generates a default name for the control that can be changed at design time. For HTML scripts, you can define the name in the <OBJECT> tag. If you define the name, follow the conventions of the programming language for defining object names.

--

Suspended Property

Description

Returns a Boolean indicating the Microsoft Agent server operational state.

Syntax

agent.Suspended

Remarks

The Suspended property returns False when the server is in its normal running state. When the property returns True, the server is in its "suspended" state, which indicates that the user shut down the server and implies that no character interaction is desired. Client applications can only read this property, but you can display your own message box suggesting how to restart the server.

See Also

Restart event, Shutdown event

--

Agent Control Events

The Microsoft Agent control provides several events that enable your client application to track the state of the server:

ActivateInput, BalloonHide, BalloonShow, Bookmark, Click, Command, DblClick, DeactivateInput, DragComplete, DragStart, Hide, IdleComplete, IdleStart, Move, RequestComplete, RequestStart, Restart, Show, Shutdown, Size

ActivateInput Event

Description

Occurs when a client becomes input-active.

Syntax

Sub agent_ActivateInput (ByVal CharacterID)

Value�Description��CharacterID �Returns the ID of the character through which the client becomes input-active.��

Remarks

The input-active client receives mouse and speech input events supplied by the server. The server sends this event only to the client that becomes input-active.

This event can occur when the user switches to your Commands object, for example, by choosing your Commands object entry in the Commands Window or in the pop-up menu for a character. It can also occur when the user selects a character (by clicking or speaking its name), when a character becomes visible, and when the character of another client application becomes hidden. You can also call the Activate method (with State set to 2) to explicitly make the character topmost, which results in your client application becoming input-active and triggers this event. However, this event does not occur if you use the Activate method only to specify whether your client is the active client of the character.

See Also

DeactivateInput event, Activate method

--

BalloonHide Event

Description

Occurs when a character's word balloon is hidden.

Syntax

Sub agent_BalloonHide (ByVal CharacterID)

Value�Description��CharacterID�Returns the ID of the character associated with the word balloon.��

Remarks

The server sends this event only to the clients of the character (applications that have loaded the character) that uses the word balloon.

See Also

BalloonShow event

--

BalloonShow Event

Description

Occurs when a character's word balloon is shown.

Syntax

Sub agent_BalloonShow (ByVal CharacterID)

Value�Description��CharacterID�Returns the ID of the character associated with the word balloon.��

Remarks

The server sends this event only to the clients of the character (applications that have loaded the character) that uses the word balloon.

See Also

BalloonHide event

--

Bookmark Event

Description

Occurs when a bookmark in a speech text string that your application defined is activated.

Syntax

Sub agent_Bookmark(ByVal BookmarkID)

Value�Description��BookmarkID�A Long integer identifying the bookmark number.��

Remarks

To specify a bookmark event, use the Speak method with a Mrk tag in your supplied text. For more information about tags, see Speech Output Tags.

--

Click Event

Description

Occurs when the user clicks a character.

Syntax

Sub agent_Click (ByVal CharacterID, ByVal Button, ByVal Shift, ByVal X, ByVal Y)

Value�Description��CharacterID �Returns the ID of the clicked character as a string.��Button�Returns an integer that identifies the button that was pressed and released to cause the event. The button argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that caused the event. ��Shift�Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when the button specified in the button argument is pressed or released. A bit is set if the key is down. The shift argument is a bit field with the least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the value of shift would be 6.��X,Y�Returns an integer that specifies the current location of the mouse pointer. The X and Y values are always expressed in pixels, relative to the upper left corner of the screen.��

Remarks

This event is sent only to the input-active client of a character. When the user clicks a character with no input-active client, the server sets its last input-active client as the current input-active client, sending the ActivateInput event to that client, and then sending the Click event.

Note Clicking a character does not disable all other character output (all characters). However, pressing the listening hot key does flush the input-active character’s output and triggers the RequestComplete event, passing a Request.Status that indicates that the client’s queue was interrupted.

--

Command Event

Description

Occurs when a (client’s) command is chosen by the user.

Syntax

Sub agent_Command(ByVal UserInput)

Value�Description��UserInput�Identifies the Command object returned by the server.

The following properties can be accessed from the Command object.

CharacterID		A string value identifying the name (ID) of the character that received the 			command.

Name			A string value identifying the name (ID) of the command.

Confidence		A Long integer value indicating the confidence scoring for the command.

Voice			A string value identifying the voice text for the command.

Alt1Name		A string value identifying the name of the next (second) best command.

Alt1Confidence	A Long integer value indicating the confidence scoring for the next (second) 			best command.

Alt1Voice		A string value identifying the voice text for the next best alternative command 			match.

Alt2Name		A string value identifying the name of third best command match.

Alt2Confidence	A Long integer identifying the confidence scoring for the third best command 			match.

Alt2Voice		A string value identifying the voice text for the third best command match.

Count			Long integer value indicating the number of alternatives returned.

��

Remarks

The server notifies you with this event when your application is input-active and the user chooses a command you defined to appear in the Commands Window or character’s pop-up menu. The event passes back the number of possible matching commands in Count as well as the name, confidence scoring, and voice text for those matches.

If voice input triggers this event, the server returns a string that identifies the best match in the Name parameter, and the second- and third-best match in Alt1Name and Alt2Name. An empty string indicates that the input did not match any command your application defined; for example, it could be one of the server’s defined commands. It is also possible that you may get the same command name returned in more than one entry. Confidence, Alt1Confidence, and Alt2Confidence parameters return the relative scores, in the range of -100 to 100, that are returned by the speech recognition engine for each respective match. Voice, Alt1Voice, and Alt2Voice parameters return the voice text that the speech recognition engine matched for each alternative. If Count returns zero (0), the server detected spoken input, but determined that there was no matching command.

If voice input was not the source for the command, for example, if the user selected the command from the character’s pop-up menu, the server returns the name (ID) of the command selected in the Name property. It also returns the value of the Confidence parameter as 100, and the value of the Voice parameters as the empty string (""). Alt1Name and Alt2Name also return empty strings. Alt1Confidence and Alt2Confidence return zero (0), and Alt1Voice and Alt2Voice return empty strings. Count returns 1.

Note	The Microsoft Command and Control speech recognition engine supports returning values in the parameters of this event. If you use Microsoft Agent with another speech engine, check with the supplier to determine whether their engine supports the Microsoft Speech API interface for returning alternatives and confidence scores.

--

DblClick Event

Description

Occurs when the user double-clicks a character.

Syntax

Sub agent_DblClick (ByVal CharacterID, ByVal Button, ByVal Shift, ByVal X, ByVal Y)

Value�Description��CharacterID �Returns the ID of the double-clicked character as a string.��Button�Returns an integer that identifies the button that was pressed and released to cause the event. The button argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that caused the event. ��Shift�Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when the button specified in the button argument is pressed or released. A bit is set if the key is down. The shift argument is a bit field with the least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the value of shift would be 6.��X,Y�Returns an integer that specifies the current location of the mouse pointer. The X and Y values are always expressed in pixels, relative to the upper left corner of the screen.��

Remarks

This event is sent only to the input-active client of a character. When the user double-clicks a character with no input-active client, the server sets its last input-active client as the current input-active client, sending the ActivateInput event to that client, and then sending the DblClick event.

--

DeactivateInput Event

Description

Occurs when a client becomes non-input-active.

Syntax

Sub agent_DeactivateInput (ByVal CharacterID)

Value�Description��CharacterID�Returns the ID of the character that makes the client become non-input-active.��

Remarks

A non-input-active client no longer receives mouse or speech events from the server (unless it becomes input-active again). The server sends this event only to the client that becomes non-input-active. It does not occur when you use the Activate method and set the State parameter to 0.

This event occurs when your client application is input-active and the user chooses the caption of another client in a character’s pop-up menu or the Commands Window. It may also occur when the user selects the name of another character by clicking or speaking. You also get this event when your character is hidden or another character becomes visible.

See Also

ActivateInput event

--

DragComplete Event

Description

Occurs when the user completes dragging a character.

Syntax

Sub agent_DragComplete (ByVal CharacterID, ByVal Button, ByVal Shift, ByVal X, ByVal Y)

Value�Description��CharacterID �Returns the ID of the dragged character as a string.��Button�Returns an integer that identifies the button that was pressed and released to cause the event. The button argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that caused the event. ��Shift�Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when the button specified in the button argument is pressed or released. A bit is set if the key is down. The shift argument is a bit field with the least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the value of shift would be 6.��X,Y�Returns an integer that specifies the current location of the mouse pointer. The X and Y values are always expressed in pixels, relative to the upper left corner of the screen.��

Remarks

This event is sent only to the input-active client of a character. When the user drags a character with no input-active client, the server sets its last input-active client as the current input-active client, sending the ActivateInput event to that client, and then sending the DragStart and DragComplete events.

See Also

DragStart event

--

DragStart Event

Description

Occurs when the user begins dragging a character.

Syntax

Sub agent_DragStart (ByVal CharacterID, ByVal Button, ByVal Shift, ByVal X, ByVal Y)

Value�Description��CharacterID �Returns the ID of the clicked character as a string.��Button�Returns an integer that identifies the button that was pressed and released to cause the event. The button argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that caused the event. ��Shift�Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when the button specified in the button argument is pressed or released. A bit is set if the key is down. The shift argument is a bit field with the least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the value of shift would be 6.��X,Y�Returns an integer that specifies the current location of the mouse pointer. The X and Y values are always expressed in pixels, relative to the upper left corner of the screen.��

Remarks

This event is sent only to the input-active client of a character. When the user drags a character with no input-active client, the server sets its last input-active client as the current input-active client, sending the ActivateInput event to that client, and then sending the DragStart event.

See Also

DragComplete event

--

Hide Event

Description

Occurs when a character is hidden.

Syntax

Sub agent_Hide (ByVal CharacterID, ByVal Cause)

Value�Description��CharacterID�Returns the ID of the hidden character as a string.��Cause�Returns a value that indicates what caused the character to hide.

1	The user hid the character (using the menu or voice command).

3	Your client application hid the character.

5	Another client application hid the character.��

Remarks

The server sends this event to all clients of the character. To query the current state of the character, use the Visible property.

See Also

Show event, VisibilityCause property

--

IdleComplete Event

Description

Occurs when the server ends the Idling state of a character.

Syntax

Sub agent_IdleComplete (ByVal CharacterID)

Value�Description��CharacterID�Returns the ID of the idling character as a string.��

Remarks

The server sends this event to all clients of the character.

See Also

IdleStart event

--

IdleStart Event

Description

Occurs when the server sets a character to the Idling state.

Syntax

Sub agent_IdleStart (ByVal CharacterID)

Value�Description��CharacterID�Returns the ID of the idling character as a string.��

Remarks

The server sends this event to all clients of the character.

See Also

IdleComplete event

--

Move Event

Description

Occurs when a character is moved.

Syntax

Sub agent_Move (ByVal CharacterID, ByVal X, ByVal Y, ByVal Cause)

Value�Description��CharacterID�Returns the ID of the character that moved.��X�Returns the x-coordinate (in pixels) of the top edge of character frame's new location as an integer.��Y�Returns the y-coordinate (in pixels) of the left edge of character frame's new location as an integer.��Cause�Returns a value that indicates what caused the character to move.

1	The user dragged the character.

2	Your client application moved the character.

3	Another client application moved the character.��

Remarks

This event occurs when the user or an application changes the character's position. Coordinates are relevant to the upper left corner of the screen. This event is sent only to the clients of the character (applications that have loaded the character).

See Also

MoveCause property, Size event

--

RequestComplete Event

Description

Occurs when the server completes a queued request.

Syntax

Sub agent_RequestComplete (ByVal Request)

Value�Description��Request �Returns the Request object. ��

Remarks

This event returns a Request object. Because requests are processed asynchronously, you can use this event to determine when the server completes processing a request (such as a Get, Play, or Speak method) to synchronize this event with other actions generated by your application. The server sends the event only to the client that created the reference to the Request object and only if you defined a global variable for the request reference:

	Dim MyRequest

	Dim Genie

	Sub window_Onload

	

	Agent1.Characters.Load "Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf"

	Set Genie = Agent.Characters("Genie")

	‘ This syntax will generate RequestStart and RequestComplete events.

	Set MyRequest = Genie.Get("state", "Showing")

	‘ This syntax will not generate RequestStart and RequestComplete events.

	Genie.Get "state", "Hiding"

	

	End Sub

	Sub Agent1_RequestComplete(ByVal Request)

	If Request = MyRequest Then

		Status = "Showing animation is now loaded"

	End Sub

Note	In VBScript 1.0, this event fires even if you don’t define references to a Request object. This has been fixed in VBScript 2.0, which can be downloaded from http://microsoft.com/msdownload/scripting.htm.

See Also

RequestStart event

--

RequestStart Event

Description

Occurs when the server begins a queued request.

Syntax

Sub agent_RequestStart (ByVal Request)

Value�Description��Request �Returns the Request object. ��

Remarks

The event returns a Request object. Because requests are processed asynchronously, you can use this event to determine when the server begins processing a request (such as a Get, Play, or Speak method) and thereby synchronize this with other actions generated by your application. The event is sent only to the client that created the reference to the Request object and only if you defined a global variable for the request reference:

	Dim MyRequest

	Dim Genie

	Sub window_Onload

	

	Agent1.Characters.Load "Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf"	

	Set Genie = Agent1.Characters("Genie")

	‘ This syntax will generate RequestStart and RequestComplete events.

	Set MyRequest = Genie.Get("state", "Showing")

	‘ This syntax will not generate RequestStart and RequestComplete events.

	Genie.Get ("state", "Hiding")

	End Sub

	Sub Agent1_RequestStart(ByVal Request)

	If Request = MyRequest Then

		Status = "Loading the Showing animation"

	End Sub

The Status returns 4 (request in progress) for the Request object returned.

Note	In VBScript 1.0, this event fires even if you don’t define references to a Request object. This has been fixed in VBScript 2.0, which can be downloaded from http://microsoft.com/msdownload/scripting.htm.

See Also

RequestComplete event

--

Restart Event

Description

Occurs when the server restarts from its suspended state.

Syntax

Sub agent_Restart ()

Remarks

The server sends this event to all client applications when the user chooses to restart the server from its suspended state. However, you will not get this event if you close your connection to the server when the server shuts down.

--

Show Event

Description

Occurs when a character is displayed.

Syntax

Sub agent_Show (ByVal CharacterID, ByVal Cause)

Value�Description��CharacterID�Returns the ID of the character shown as a string.��Cause�Returns a value that indicates what caused the character to display.

2	The user showed the character (using the menu or voice command).

4	Your client application showed the character.

6	Another client application showed the character.��

Remarks

The server sends this event to all clients of the character. To query the current state of the character, use the Visible property.

See Also

Hide event, VisibilityCause property

--

Shutdown Event

Description

Occurs when the user explicitly shuts down (exits) Microsoft Agent.

Syntax

Sub agent_Shutdown()

Remarks

When the user explicitly chooses Exit on the pop-up menu on the Microsoft Agent taskbar icon and confirms the choice in the warning message box, the server sends this event to all connected clients and then exits. The server also sets the control’s Connected property to False. Any subsequent calls you make to the server will fail. You may want to handle this error condition.

Size Event

Description

Occurs when a character's size changes.

Syntax

Sub agent_Size (ByVal CharacterID, ByVal Width, ByVal Height)

Value�Description��CharacterID�Returns the ID of the character that moved.��Width�Returns the character frame's new width (in pixels) as an integer.��Height�Returns the character frame's new height (in pixels) as an integer.��

Remarks

This event occurs when an application changes the size of a character. This event is sent only to the clients of the character (applications that have loaded the character).

See Also

Move event

The Characters Object

Your client application can support one or more characters. In addition, you can share a character among several applications. Microsoft Agent defines the Characters object as a collection of characters. To access a character, load the character’s data into the Characters collection and specify that that item in the collection uses the methods and properties supported for that character.

Characters Object Methods

The Characters object supports methods for accessing, loading, and unloading characters into its collection:

Character, Load, Unload

Character Method

Description

Returns a Character object in a Characters collection.

Syntax

agent.Characters.Character "CharacterID"

Remarks

You can use this method to access a Character object’s methods and properties.

Note	This method may be required for some programming languages that do not support collections. It is not required for VBScript or Visual Basic. For further information on specifying Character methods, see Character Object Methods.

--

Load Method

Description

Loads a character into the Characters collection.

Syntax

agent.Characters.Load "CharacterID", Provider

Part�Description��CharacterID�Required. A string value that you will use to refer to the character data to be loaded.��Provider�Required. A variant data type that must be one of the following:

Filespec 	The local file location of the specified character’s definition file.

URL 		The HTTP address for the character’s definition file.

provider 	An alternate character definition provider (object).��

Remarks

The Microsoft Agent Data Provider supports loading character data stored either as a single structured file (.ACS) with character data and animation data together or as separate character data (.ACF) and animation (.AAF) files. Use the single structured .ACS file to load a character that is stored on a local disk or network and accessed using a conventional file protocol (such as UNC pathnames). Use the separate .ACF and .AAF files when you want to load the animation files individually from a remote site where they are accessed using the HTTP protocol.

For .ACS files, using the Load method provides access a character’s animations. For .ACF files, you also use the Get method to load animation data. The Load method does not support downloading .ACS files from an HTTP site.

Loading a character does not automatically display the character. Use the Show method first to make the character visible.

If you create an object reference and assign it to this method, it returns a Request object. If you use HTTP protocol, assigning a Request object to the Load method and checking its status in the RequestComplete event enables you to prevent your code from failing when the character data fails to load.

The Provider parameter also enables you to specify your own data provider (that would be loaded using a separate control) that can have its own methods for loading animation data. You only need to create a data provider object if you supply character data in special formats.

To load a character from the Microsoft Agent site, consult the character data page at http://www.microsoft.com/workshop/prog/agent/characterdata.htm for the latest information on the location of the character files.

--

Unload Method

Description

Unloads the character data for the specified character.

Syntax

agent.Characters.Unload "CharacterID"

Remarks

Use this method when you no longer need a character, to free up memory used to store information about the character. If you access the character again, use the Load method.

This method does not return a Request object.

--

Character Object Methods

The server also exposes methods for each character in a Characters collection. The following methods are supported:

Activate, GestureAt, Get, Hide, Interrupt, MoveTo, Play, Show, Speak, Stop, StopAll, Wait

To use a method, reference the character in the collection. In VBScript and Visual Basic, you do this by specifying the ID for a character:

	Sub FormLoad

	‘Load the genie character into the Characters collection

	Agent1.Characters.Load "Genie", _

		"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

	‘Display the character

	Agent1.Characters("Genie").Show

	Agent1.Characters("Genie").Play "Greet"

	Agent1.Characters("Genie").Speak "Hello. "

	End Sub

To simplify the syntax of your code, you can define an object variable and set it to reference a character object in the Characters collection; then you can use your variable to reference methods or properties of the character. The following example demonstrates how you can do this using the Visual Basic Set statement:

	‘Define a global object variable

	Dim Genie as Object

	Sub FormLoad

	‘Load the genie character into the Characters collection

	Agent1.Characters.Load "Genie", _

		"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

	‘Create a reference to the character

	Set Genie = Agent1.Characters("Genie")

	‘Display the character

	Genie.Show

	‘Get the Restpose animation

	Genie.Get "animation", "RestPose"

	‘Make the character say Hello

	Genie.Speak "Hello."

	End Sub

In Visual Basic 5.0, you can also create your reference by declaring your variable as a Character object:

	Dim Genie as IAgentCtlCharacter

	Sub FormLoad

	‘Load the genie character into the Characters collection

	Agent1.Characters.Load "Genie", _

		"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

	‘Create a reference to the character

	Set Genie = Agent1.Characters("Genie")

	‘Display the character

	Genie.Show

	End Sub

Declaring your object of type IAgentCtlCharacter enables early binding on the object, which results in better performance.

In VBScript, you cannot declare a reference as a particular type. However, you can simply declare the variable reference:

<!—-

	Dim Genie

	

	SUB window_OnLoad

	

	‘Load the character

	AgentCtl.Characters.Load "Genie", _

	 "http://agent.microsoft.com/characters/genie/genie.acf"

	‘Create an object reference to the character in the collection

	set Genie= AgentCtl.Characters ("Genie")

	‘Get the Showing state animation

	Genie.Get "state", "Showing"

	‘Display the character

	Genie.Show

	End Sub

-->

	

</SCRIPT>

Some programming languages do not support collections. However, you can access a Character object's methods with the Character method:

	agent.Characters.Character("CharacterID").method

In addition, you can also create a reference to the Character object to make your script code easier to follow:

<SCRIPT LANGUAGE="JScript" FOR="window" EVENT="onLoad()">

<!--

	

	//Load the character’s data

	AgentCtl.Characters.Load ("Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf");	

	//Create a reference to this object

	Genie = AgentCtl.Characters.Character("Genie");

	

	//Get the Showing state animation

	Genie.Get("state", "Showing");

	//Display the character

	Genie.Show();

-->

</SCRIPT>

--

Activate Method

Description

Sets the active client or character.

Syntax

agent.Characters ("CharacterID").Activate [State]

Part�Description��State�Optional. You can specify the following values for this parameter:

0	Not the active client.

1	The active client.

2	(Default) The topmost character.��

Remarks

When multiple characters are visible, only one of the characters receives speech input at a time. Similarly, when multiple client applications share the same character, only one of the clients receives mouse input (for example, Microsoft Agent control click or drag events). The character set to receive mouse and speech input is the topmost character and the client that receives the input is the active client of that character. (The topmost character’s window also appears at the top of the character windows z-order.) Typically, the user determines the topmost character by explicitly selecting the character. However, topmost activation also changes when a character is shown or hidden (the character becomes or is no longer topmost, respectively.)

You can also use this method to explicitly manage when your client receives input directed to the character such as when your application itself becomes active. For example, setting State to 2 makes the character topmost and your client receives all mouse and speech input events generated from user interaction with the character. Therefore, it also makes your client the input-active client of the character.

However, you can also set yourself to be the active client for a character without making the character topmost, by setting State to 1. This enables your client to receive input directed to that character when the character becomes topmost. Similarly, you can set your client to not be the active client (not to receive input) when the character becomes topmost, by setting State to 0.

Avoid calling this method directly after a Show method. Show automatically sets the input-active client. When the character is hidden, the Activate call may fail if it gets processed before the Show method completes.

If you call this method to a function, it returns a Boolean value that indicates whether the method succeeded. Attempting to call this method with the State parameter set to 2 when the specified character is hidden will fail. Similarly, if you set State to 0 and your application is the only client, this call fails because a character must always have a topmost client.

	Dim Genie as Object

	Sub FormLoad()

	Agent1.Characters.Load "Genie", _

		"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

	Set Genie = Agent1.Characters ("Genie")

	If (Genie. Activate = True) Then

		'I'm active

	Else

		'I must be hidden or something

	End If

	

	End Sub

See Also

ActivateInput event, DeactivateInput event

--

GestureAt Method

Description

Plays the gesturing animation for the specified character at the specified location.

Syntax

agent.Characters ("CharacterID").GestureAt X,Y

Part�Description��X,Y�Required. An integer value that indicates the horizontal (X) screen coordinate and vertical (Y) screen coordinate to which the character will gesture. These coordinates must be specified in pixels.��

Remarks

The server automatically plays the appropriate animation to gesture toward the specified location. The coordinates are always relative to the screen origin (upper left).

If you declare an object reference and set it to this method, it returns a Request object. In addition, if the associated animation has not been loaded on the local machine, the server sets the Request object’s Status property to "failed" with an appropriate error number. Therefore, if you are using the HTTP protocol to access character animation data, use the Get method to load the Gesturing state animations before calling the GestureAt method.

--

Get Method

Description

Retrieves specified animation data for the specified character.

Syntax

agent.Characters ("CharacterID").Get Type, Name, [Queue]

Part�Description��Type�Required. A string value that indicates the animation data type to load.

"Animation"	A character’s animation data.

"State" 	A character’s state data.

"WaveFile"	A character’s audio (for spoken output) file. ��Name�Required. A string that indicates the name of the animation type.

"name"	The name of the animation or state.

For animations, the name is based on that defined for the character when saved using the Microsoft Agent Character Editor.

For states, the following values can be used:

"Gesturing"		To get all Gesturing state animations.

"GesturingDown"	To get the GesturingDown animation.

"GesturingLeft"	To get the GesturingLeft animation.

"GesturingRight"	To get the GesturingRight animation.

"GesturingUp"		To get the GesturingUp animation.

"Hiding"		To get the Hiding state animation.

"Hearing"		To get the Hearing state animation.

"Idling"		To get all Idling state animations.

"IdlingLevel1"		To get all IdlingLevel1 animations.

"IdlingLevel2"		To get all IdlingLevel2 animations.

"IdlingLevel3"		To get all IdlingLevel3 animations.

"Listening"		To get the Listening state animation.

"Moving"		To get all Moving state animations.

"MovingDown"		To get the MovingDown animation.

"MovingLeft"		To get the MovingLeft animation.

"MovingRight"		To get the MovingRight animation.

"MovingUp"		To get the MovingUp animation.

"Showing"		To get the Showing state animation.

"Speaking"		To get the Speaking state animation.

You can specify multiple animations and states by separating them with commas. However, you cannot mix types in the same Get statement.

"URL or filespec"	The specification for the sound (.WAV or .LWV) file. If the specification is not complete, it is interpreted as being relative to the specification used in the Load method.

��Queue�Optional. A Boolean expression specifying whether the server queues the Get request.

True	(Default) Queues the Get request. Any animation request that follows the Get request (for the same character) waits until the animation data is loaded.

False 	Does not queue the Get request. ��

Remarks

You need to use the Get method only to retrieve animation data using the HTTP protocol.

If you declare an object reference and set it to this method, it returns a Request object. If the associated animation fails to load, the server sets the Request object’s Status property to "failed" with an appropriate error number. You can use the RequestComplete event to check the status and determine what action to take.

Animation or sound data retrieved with the Get method is stored in the browser’s cache. Subsequent calls will check the cache, and if the animation data is already there, the control loads the data directly from the cache. Once loaded, the animation or sound data can be played with the Play or Speak methods.

See Also

Load method

--

Hide Method

Description

Hides the specified character.

Syntax

agent.Characters ("CharacterID").Hide [Fast]

Part�Description��Fast�Optional. A Boolean value that indicates whether to skip the animation associated with the character’s Hiding state

True	Does not play the Hiding animation.

False	(Default) Plays the Hiding animation. ��

Remarks

The server queues the actions of the Hide method in the character’s queue, so you can use it to hide the character after a sequence of other animations. You can play the action immediately by using the Stop method before calling this method.

If you declare an object reference and set it to this method, it returns a Request object. In addition, if the associated Hiding animation has not been loaded and you have not specified the Fast parameter as True, the server sets the Request object Status property to "failed" with an appropriate error number. Therefore, if you are using the HTTP protocol to access character or animation data, use the Get method and specify the Hiding state to load the animation before calling the Hide method.

Hiding a character can also result in triggering the ActivateInput event of another client.

Note	Hidden characters cannot access the audio channel. The server will pass back a failure status in the RequestComplete event if you generate an animation request and the character is hidden.

See Also

Show method

--

Interrupt Method

Description

Interrupts the animation for the specified character.

Syntax

agent.Characters ("CharacterID").Interrupt Request

Remarks

You can use this to sync up animation between characters. For example, if another character is in a looping animation, this method will stop the loop and move to the next animation in the character’s queue. You cannot interrupt a character animation that you are not using (that you have not loaded).

To specify the request parameter, you must create a variable and assign the animation request you want to interrupt:

	Dim GenieRequest as Object

	Dim RobbyRequest as Object

	Dim Genie as Object

	Dim Robby as Object

	Sub FormLoad()

		MyAgent1.Characters.Load "Genie", _

			"C:\Program Files\Microsoft Agent\Characters\Genie.acs"

		MyAgent1.Characters.Load "Robby", _

			"C:\Program Files\Microsoft Agent\Characters\Robby.acs"

		Set Genie = MyAgent1.Characters ("Genie")

		Set Robby = MyAgent1.Characters ("Robby")

		Genie.Show

		Genie.Speak "Just a moment"

		Set GenieRequest = Genie.Play ("Processing")

		Robby.Show

		Robby.Play "confused"

		Robby.Speak "Hey, Genie. What are you doing?"

		Robby.Interrupt GenieRequest

		Genie.Speak "I was just checking on something."

	End Sub

You cannot interrupt the animation of the same character you specify in this method because the server queues the Interrupt method in that character’s animation queue. Therefore, you can only use Interrupt to halt the animation of another character you have loaded.

If you declare an object reference and set it to this method, it returns a Request object.

Note	Interrupt does not flush the character’s queue; it halts the existing animation and moves on to the next animation in the character’s queue. To halt and flush a character’s queue, use the Stop method.

See Also

Stop method

--

MoveTo Method

Description

Moves the specified character to the specified location.

Syntax

agent.Characters ("CharacterID").MoveTo X,Y, [Speed]

Part�Description��X,Y�Required. An integer value that indicates the left edge (X) and top edge (Y) of the animation frame. Express these coordinates in pixels.��Speed�Optional. A Long integer value specifying in milliseconds how quickly the character’s frame moves. The default value is 1000. Specifying zero (0) moves the frame without playing an animation.��

Remarks

The server automatically plays the appropriate animation assigned to the Moving states. The location of a character is based on the upper left corner of its frame.

If you declare an object variable and set it to this method, it returns a Request object. In addition, if the associated animation has not been loaded on the local machine, the server sets the Request object’s Status property to "failed" with an appropriate error number. Therefore, if you are using the HTTP protocol to access character or animation data, use the Get method to load the Moving state animations before calling the MoveTo method.

Even if the animation is not loaded, the server still moves the frame.

Note	If you call MoveTo with a non-zero value before the character is shown, it will return a failure status if you assigned it a Request object, because the non-zero value indicates that you are attempting to play an animation when the character is not visible.

--

Play Method

Description

Plays the specified animation for the specified character.

Syntax

agent.Characters ("CharacterID").Play "AnimationName"

Part�Description��AnimationName�Required. A string that specifies the name of an animation sequence.��

Remarks

An animation’s name is defined when the character is compiled with the Microsoft Agent Character Editor. Before playing the specified animation, the server attempts to play the Return animation for the previous animation, if one has been assigned.

When accessing a character’s animations using a conventional file protocol, you can simply use the Play method specifying the name of the animation. However, if you are using the HTTP protocol to access character animation data, use the Get method to load the animation before calling the Play method.

For more information, see the Get method.

To simplify your syntax, you can declare an object reference and set it to reference the Character object in the Characters collection and use the reference as part of your Play statements:

	Dim Genie	

	Agent1.Characters.Load "Genie", _ 	

		"http://agent.microsoft.com/characters/genie/genie.acf"

	Set Genie = Agent1.Characters ("Genie")

	

	Genie.Get "state", "Showing"

	Genie.Show

	Genie.Get "animation", "Greet, GreetReturn"

	Genie.Play "Greet"

	Genie.Speak "Hello."

If you declare an object reference and set it to this method, it returns a Request object. In addition, if you specify an animation that is not loaded or if the character has not been successfully loaded, the server sets the Status property of Request object to "failed" with an appropriate error number. However, if the animation does not exist and the character’s data has already been successfully loaded, the server raises an error.

The Play method does not make the character visible. If the character is not visible, the server plays the animation invisibly, and sets the Status property of the Request object.

--

Show Method

Description

Makes the specified character visible and plays its associated Showing animation.

Syntax

agent.Characters ("CharacterID").Show [Fast]

Part�Description��Fast�Optional. A Boolean expression specifying whether the server plays the Showing animation.

True	Skips the Showing state animation.

False 	(Default) Does not skip the Showing state animation. ��

Remarks

If you declare an object reference and set it to this method, it returns a Request object. In addition, if the associated Showing animation has not been loaded and you have not specified the Fast parameter as True, the server sets the Request object’s Status property to "failed" with an appropriate error number. Therefore, if you are using the HTTP protocol to access character animation data, use the Get method to load the Showing state animation before calling the Show method.

Avoid setting the Fast parameter to True without first playing an animation beforehand; otherwise, the character frame may display with no image. In particular, note that if you call MoveTo when the character is not visible, it does not play any animation. Therefore, if you call the Show method with Fast set to True, no image will display. Similarly, if you call Hide then Show with Fast set to True, there will be no visible image.

See Also

Hide method

--

Speak Method

Description

Speaks the specified text for the specified character.

Syntax

agent.Characters ("CharacterID").Speak [Text] [, Url]

Part�Description��Text�Optional. A string that specifies what the character says.��Url�Optional. A string expression specifying the specification for an audio file. The specification can be a file specification or URL.��

Remarks

Although the Text and Url parameters are optional, one of them must be supplied. To use this method with a character configured to speak only in its word balloon or using a text-to-speech (TTS) engine, simply provide the Text parameter. Include a space between words to define appropriate word breaks in the word balloon, even for languages that do not traditionally include spaces.

You can also include vertical bar characters (|) in the Text parameter to designate alternative strings, so that the server randomly chooses a different string each time it processes the method.

Character support of TTS output is defined when the character is compiled using the Microsoft Agent Character Editor. To generate TTS output, a compatible TTS engine must already be installed before calling this method. For further information, see Accessing Speech Support for Microsoft Agent.

If you use recorded sound-file output for the character, specify the file's location in the Url parameter. However, if you are using the HTTP protocol to access character or animation data, use the Get method to load the animation before calling the Speak method. When doing so, you still use the Text parameter to specify the words that appear in the character’s word balloon. However, if you specify a linguistically enhanced sound file (.LWV) for the Url parameter and do not specify text for the word balloon, the Text parameter uses the text stored in the file.

You can also vary parameters of the speech output with special tags that you include in the Text parameter. For more information, see Speech Output Tags. If you declare an object reference and set it to this method, it returns a Request object. In addition, if the file has not been loaded, the server sets the Request object’s Status property to "failed" with an appropriate error code number.

The Speak method uses the last action played to determine which speaking animation to play. For example, if you preceded the Speak command with a Play "GestureRight", the server will play GestureRight and then the GestureRight speaking animation.

If you call Speak and the audio channel is busy, the character’s audio output will not be heard, but the text will display in the word balloon.

Note	The word balloon’s Enabled property must also be True for text to display.

Note	If you are using a character that you did not compile, check the balloon FontName and CharSet properties for the character to determine whether they are appropriate for your locale. You may need to set these values before using the Speak method to ensure appropriate text display within the word balloon.

--

Stop Method

Description

Stops the animation for the specified character.

Syntax

agent.Characters ("CharacterID").Stop [Request]

Part�Description��Request�Optional. To use this parameter, set the Request object in your code.��

Remarks

If you don’t set the Request parameter, the server stops all animations for the character, including queued Get calls, and clears its animation queue unless the character is currently playing its Hiding or Showing animation. This method does not stop non-queued Get calls.

To stop a specific animation or Get call, declare an object variable and assign your animation request to that variable:

	Dim MyRequest

	Dim Genie

	Agent1.Characters.Load "Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf"

	Set Genie = Agent1.Characters ("Genie")

	Genie.Get "state", "Showing"

	Genie.Get "animation", "Greet, GreetReturn"

	Genie.Show

	

	‘This animation will never play

	Set MyRequest = Genie.Play ("Greet")

	

	Genie.Stop MyRequest

This method will not generate a Request object.

See Also

StopAll method

--

StopAll Method

Description

Stops all animation requests or specified types of requests for the specified character.

Syntax

agent.Characters ("CharacterID").StopAll [Type]

Part�Description��Type�Optional. To use this parameter you can use any of the following values. You can also specify multiple types by separating them with commas.

"Get"			To stop all queued Get requests.

"NonQueuedGet"	To stop all non-queued Get requests (Get �			method with Queue parameter set to False).

"Move"		To stop all queued MoveTo requests.

"Play"			To stop all queued Play requests.

"Speak"		To stop all queued Speak requests.��

Remarks

If you don’t set the Type parameter, the server stops all animations for the character, including queued and non-queued Get requests, and clears its animation queue. It also stops playing a character’s Hiding or Showing animation.

This method will not generate a Request object.

See Also

Stop method

--

Wait Method

Description

Causes the animation queue for the specified character to wait until the specified animation request completes.

Syntax

agent.Characters ("CharacterID").Wait Request

Part�Description��Request�A Request object specifying a particular animation. To set this parameter you must assign the Request object variable in your code. ��

Remarks

Use this method only when you support multiple (simultaneous) characters and are trying to sequence the interaction of characters (as a single client). (For a single character, each animation request is played sequentially--after the previous request completes.) If you have two characters and you want a character’s animation request to wait until the other character’s animation completes, set the Wait method to the other character’s animation Request object, as shown in the following example:

	Dim GenieRequest

	Dim RobbyRequest

	Dim Genie

	Dim Robby

	Sub window_Onload

	Agent1.Characters.Load "Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf"

	Agent1.Characters.Load "Robby", _

		"http://agent.microsoft.com/characters/robby/robby.acf"

	Set Genie = Agent1.Characters("Genie")

	Set Robby = Agent1.Characters("Robby")

	Genie.Get "State", "Showing"

	Robby.Get "State", "Showing"

	Genie.Get "Animation", "Announce, AnnounceReturn, Pleased, _

		PleasedReturn"

	

	Robby.Get "Animation", "Confused, ConfusedReturn, Sad, SadReturn"

	Set Genie = Agent1.Characters ("Genie")

	Set Robby = Agent1.Characters ("Robby")

	Genie.MoveTo 100,100

	Genie.Show

	Robby.MoveTo 250,100

	Robby.Show

	Genie.Play "Announce"

	Set GenieRequest = Genie.Speak ("Why did the chicken cross the road?")

	

	Robby.Wait GenieRequest

	Robby.Play "Confused"

	Set RobbyRequest = Robby.Speak ("I don’t know. Why did the chicken _

		cross the road?")

	

	Genie.Wait RobbyRequest

	Genie.Play "Pleased"

	Set GenieRequest = Genie.Speak ("To get to the other side.")

	

	Robby.Wait GenieRequest

	Robby.Play "Sad"

	Robby.Speak "I never should have asked."

	End Sub

--

Character Object Properties

The Character object exposes the following read-only properties:

Description, ExtraData, HasOtherClients, Height, IdleOn, Left, MoveCause, Name, Pitch, SoundEffectsOn, Speed, Top, VisibilityCause, Visible, Width

Note that the Height, Left, Top, and Width properties of a character differ from those that may be supported by the programming environment for the placement of the control. The Character properties apply to the visible presentation of a character, not the location of the Microsoft Agent control.

As with Character object methods, you can access a character’s properties using the Characters collection, or simplify your syntax by declaring an object variable and setting it to a character in the collection. In the following example, Test1 and Test2 will be set to the same value:

	Dim Genie

	Dim MyRequest

	

	Sub window_Onload

	Agent.Characters.Load "Genie", _

		"http://agent.microsoft.com/characters/genie/genie.acf"

	Set Genie = Agent.Characters("Genie")

	Genie.MoveTo 15,15

	MyRequest = Genie.Show()

	End Sub

	Sub Agent_RequestComplete(ByVal Request)

	If Request = MyRequest Then

		Test1 = Agent.Characters("Genie").Top

		Test2 = Genie.Top

		MsgBox "Test 1 is " + cstr(Test1) + "and Test 2 is " + cstr(Test2)

	End If

	End Sub

Because the server loads a character asynchronously, ensure that the character has been loaded before querying its properties, for example, using the RequestComplete event. Otherwise, the properties may return incorrect values.

Description Property

Description

Returns or sets a string that specifies the description for the specified character.

Syntax

agent.Characters("CharacterID").Description

Remarks

The default value for the Description property for a character is defined when the character is compiled with the Microsoft Agent Character Editor.

Note	The Description property setting is optional and may not be supplied for all characters.

--

ExtraData Property

Description

Returns a string that specifies additional data stored as part of the character.

Syntax

agent.Characters("CharacterID").ExtraData

Remarks

The default value for the ExtraData property for a character is defined when the character is compiled with the Microsoft Agent Character Editor. It cannot be changed or specified at run time.

Note	The ExtraData property setting is optional and may not be supplied for all characters.

--

HasOtherClients Property

Description

Returns whether the specified character is in use by other applications.

Syntax

agent.Characters("CharacterID").HasOtherClients

Value�Description��True�The character has other clients.��False�The character does not have other clients.��

Remarks

You can use this property to determine whether your application is the only or last client of the character, when more than one application is sharing (has loaded) the same character.

--

Height Property

Description

Returns or sets the height of the specified character’s frame.

Syntax

agent.Characters ("CharacterID").Height [= value]

Part�Description��value�A Long integer that specifies the character’s frame height.��

Remarks

The Height property is always expressed in pixels, relative to screen coordinates (upper left).

Even though the character appears in an irregularly shaped region window, the height of the character is based on the external dimensions of the rectangular animation frame used when the character was compiled with the Microsoft Agent Character Editor.

--

IdleOn Property

Description

Returns or sets a Boolean value that determines whether the server manages the specified character’s Idling state animations.

Syntax

agent.Characters ("CharacterID").IdleOn [=boolean]

Part�Description��True�Server idle processing is enabled. The character’s Idling animations are automatically played.��False�Server idle processing is disabled. The character’s Idling animations are not automatically played.��

Remarks

The server automatically sets a time-out after the last animation played for a character. When this timer’s interval is complete, the server begins the Idling state for a character, playing its associated Idling animations at regular intervals. The default value for the IdleOn property is True, meaning that the server manages the character’s Idling state. If you want to manage the Idling state animations yourself, set the property to False.

--

Left Property

Description

Returns or sets the left edge of the specified character’s frame.

Syntax

agent.Characters ("CharacterID").Left [= value]

Part�Description��value�A Long integer that specifies the left edge of the character’s frame.��

Remarks

The Left property is always expressed in pixels, relative to screen origin (upper left).

Even though the character appears in an irregularly shaped region window, the location of the character is based on the external dimensions of the rectangular animation frame used when the character was compiled with the Microsoft Agent Character Editor.

--

MoveCause Property

Description

Returns an integer value that specifies what caused the character’s last move.

Syntax

agent.Characters("CharacterID").MoveCause

Value�Description��0�The character has not been moved.��1�The user moved the character.��2�Your application moved the character.��3�Another client application moved the character.��Remarks

You can use this property to determine what caused the character to move, when more than one application is sharing (has loaded) the same character. These values are the same as those returned by the Move event.

See Also

Move event, MoveTo method

--

Name Property

Description

Returns or sets a string that specifies the default name of the specified character.

Syntax

agent.Characters ("CharacterID").Name

Remarks

The default value for the Name property for a character is defined when the character is compiled with the Microsoft Agent Character Editor. The server uses the Name property to automatically create commands for hiding and showing a character.

--

Pitch Property

Description

Returns a Long integer for the specified character’s current speech output (TTS) pitch setting.

Syntax

agent.Characters ("CharacterID").Pitch

Remarks

This property applies only to characters configured for TTS output. If the speech synthesis (TTS) engine is not enabled or installed, or the character does not support TTS output, this property returns zero (0).

Although your application cannot write this value, you can include Pit (pitch) tags in your output text that will temporarily increase the pitch for a particular utterance. For further information, see Speech Output Tags.

--

SoundEffectsOn Property

Description

Returns or sets whether sound effects are enabled for your character.

Syntax

agent.Characters("CharacterID").SoundEffectsOn [=boolean]

Value�Description��boolean�A Boolean expression specifying whether sound effects are enabled.

True	Sound effects are enabled.

False	Sound effects are disabled.��

Remarks

This property determines whether sound effects included as a part of a character’s animations will play when an animation plays.

See Also

SoundEffects property

--

Speed Property

Description

Returns a Long integer that specifies the speed of the character’s speech output.

Syntax

agent.Characters ("CharacterID").Speed

Remarks

This property returns the current speaking output speed setting for the character. For characters using TTS output, the property returns the actual TTS output for the character. If TTS is not enabled or the character does not support TTS output, the setting reflects the user setting for output speed.

Although your application cannot write this value, you can include Spd (speed) tags in your output text that will temporarily speed up the output for a particular utterance. For further information, see Speech Output Tags.

--

Top Property

Description

Returns or sets the top edge of the specified character’s frame.

Syntax

agent.Characters ("CharacterID").Top [= value]

Part�Description��value�A Long integer that specifies the character’s top edge.��

Remarks

The Top property is always expressed in pixels, relative to screen origin (upper left).

Even though the character appears in an irregularly shaped region window, the location of the character is based on the external dimensions of the rectangular animation frame used when the character was compiled with the Microsoft Agent Character Editor.

Use the MoveTo method to change the character’s location.

--

VisibilityCause Property

Description

Returns an integer value that specifies what caused the character’s visible state.

Syntax

agent.Characters("CharacterID").VisibilityCause

Value�Description��0�The character has not been shown.��1�The user hid the character.��2�The user showed the character.��3�Your application hid the character.��4�Your application showed the character.��5�Another client application hid the character.��6�Another client application showed the character.��Remarks

You can use this property to determine what caused the character to move when more than one application is sharing (has loaded) the same character. These values are the same as those returned by the Show and Hide events.

See Also

Hide event, Show event, Hide method, Show method

--

Visible Property

Description

Returns a Boolean indicating whether the character is visible.

Syntax

agent.Characters ("CharacterID").Visible

Return�Description��True�The character is displayed.��False�The character is hidden (not visible).��

Remarks

To make a character visible or hidden, use the Show or Hide methods.

--

Width Property

Description

Returns or sets the width of the frame for the specified character.

Syntax

agent.Characters ("CharacterID").Width [= value]

Part�Description��value�A Long integer that specifies the character’s frame width.��

Remarks

The Width property is always expressed in pixels.

Even though the character appears in an irregularly shaped region window, the location of the character is based on the external dimensions of the rectangular animation frame used when the character was compiled with the Microsoft Agent Character Editor.

--

The Commands Collection Object

The Microsoft Agent server maintains a list of commands that are currently available to the user. This list includes commands that the server defines for general interaction (such as Hide and Microsoft Agent Properties), the list of available (but non-input-active) clients, and the commands defined by the current active client. The first two sets of commands are global commands; that is, they are available at any time, regardless of the input-active client. Client-defined commands are available only when that client is input-active.

Each client application can define a collection of commands called the Commands collection. To add a command to the collection, use the Add or Insert method. Although you can specify a command’s properties with separate statements, for optimum code performance, specify all of a command’s properties in the Add or Insert method statement. For each command in the collection, you can determine whether user access to the command appears in the character’s pop-up menu, in the Commands Window, in both, or in neither. For example, if you want a command to appear on the pop-up menu for the character, set the command’s Caption and Visible properties. To display the command in the Commands Window, set the command’s Caption and Voice properties.

A user can access the individual commands in your Commands collection only when your client application is input-active. Therefore, you’ll typically want to set the Caption and Voice properties for the Commands collection object as well as for the commands in the collection, which places an entry for your Commands collection in a character’s pop-up menu and in the Commands Window. When the user switches to your client by choosing its entry, the server automatically makes your client input-active and makes the commands in its collection available. This enables the server to present and accept only the commands that apply to the current input-active client’s context. It also serves to avoid command-name collisions between clients.

When a character’s pop-up menu displays, changes to the properties of a Commands collection or the commands in its collection do not appear until the user redisplays the menu. However, the Commands Window does display changes as they happen.

Commands Object Methods

The server supports the following methods for the Commands collection object:

Add, Command, Insert, Remove, RemoveAll

Add Method

Description

Adds a Command object to the Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.Add Name, Caption, Voice, _�Enabled, Visible

Part�Description��Name�Required. A string value corresponding to the ID you assign for the command.��Caption�Optional. A string value corresponding to the name that will appear in the character’s pop-up menu and in the Commands Window when the client application is input-active. For more information, see the Command object’s Caption property.��Voice�Optional. A string value corresponding to the words or phrase to be used by the speech engine for recognizing this command. For more information on formatting alternatives for the string, see the Command object’s Voice property.��Enabled�Optional. A Boolean value indicating whether the command is enabled. The default value is True. For more information, see the Command object’s Enabled property. ��Visible�Optional. A Boolean value indicating whether the command is visible in the character’s pop-up menu for the character when the client application is input-active. The default value is True. For more information, see the Command object’s Visible property.��

Remarks

The value of a Command object’s Name property must be unique within its Commands collection. You must remove a Command before you can create a new Command with the same Name property setting. Attempting to create a Command with a Name property that already exists raises an error.

See Also

Insert method, Remove method, RemoveAll method

--

Command Method

Description

Returns a Command object in a Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.Command "Name"

Remarks

You can use this method to access a Command object’s properties.

Note	This method may be required for some programming languages. It is not required for VBScript or Visual Basic. For further information on specifying Command methods, see Command Object Properties.

--

Insert Method

Description

Inserts a Command object in the Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.Insert Name, RefName, Before, _�Caption, Voice, Enabled, Visible

Part�Description��Name�Required. A string value corresponding to the ID you assign to the Command.��RefName�Required. A string value corresponding to the name (ID) of the command just above or below where you want to insert the new command.��Before�Optional. A Boolean value indicating whether to insert the new command before the command specified by RefName.

True	(Default). The new command will be inserted before the referenced command.

False	The new command will be inserted after the referenced command.��Caption�Optional. A string value corresponding to the name that will appear in the character’s pop-up menu and in the Commands Window when the client application is input-active. For more information, see the Command object’s Caption property.��Voice�Optional. A string value corresponding to the words or phrase to be used by the speech engine for recognizing this command. For more information on formatting alternatives for the string, see the Command object’s Voice property.��Enabled�Optional. A Boolean value indicating whether the command is enabled. The default value is True. For more information, see the Command object’s Enabled property.��Visible�Optional. A Boolean value indicating whether the command is visible in the Commands Window when the client application is input-active. The default value is True. For more information, see the Command object’s Visible property.��

Remarks

The value of a Command object’s Name property must be unique within its Commands collection. You must remove a Command before you can create a new Command with the same Name property setting. Attempting to create a Command with a Name property that already exists raises an error.

See Also

Add method, Remove method, RemoveAll method

--

Remove Method

Description

Removes a Command object from the Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.Remove Name

Part�Description��Name�Required. A string value corresponding to the ID for the command.��

Remarks

When a Command object is removed from the collection, it no longer appears when the character’s pop-up menu is displayed or in the Commands Window when your client application is input-active.

See Also

RemoveAll method

--

RemoveAll Method

Description

Removes all Command objects from the Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.RemoveAll

Remarks

When a Command object is removed from the collection, it no longer appears when the character’s pop-up menu is displayed or in the Commands Window when your client application is input-active.

See Also

Remove method

--

Commands Object Properties

The server supports the following properties for the Commands collection:

Caption, Count, Visible, Voice

An entry for the Commands collection can appear in both the pop-up menu and the Commands Window for a character. To make this entry appear, set its Caption property. The following table summarizes how the properties of a Commands object affect the entry’s presentation:

Caption Property�Voice Property �Visible Property�Appears in �Character’s Pop-up Menu�Appears in �Commands Window��Yes�Yes�True�Yes�Yes��Yes�No�True�Yes�No��Yes�Yes�False�No�Yes��Yes�No�False�No�No��No�Yes�True�No�No*��No�Yes�False�No�No*��No�No�True�No�No��No�No�False�No�No��*The command is still voice-accessible. If the client is input-active and has commands in its collection, "(command undefined)" appears in the Commands Window.

Caption Property

Description

Determines the text displayed for the Commands object in the character’s pop-up menu and in the Commands Window.

Syntax

agent.Characters ("CharacterID").Commands.Caption [=string]

Part�Description��string�A string expression that evaluates to the text displayed as the caption.��

Remarks

If you define commands for a Commands collection that have their Caption, Enabled, and Voice properties set, you would typically also define Caption and Voice settings for the associated Commands collection. If the Commands collection has no Voice or no Caption setting and is currently input-active, but the commands in its collection have Caption and Voice settings, the commands appear in the Commands Window tree view under "(undefined command)" when your client application becomes input-active.

--

Count Property

Description

Returns a Long integer (read-only property) that specifies the count of Command objects in the Commands collection.

Syntax

agent.Characters ("CharacterID").Commands.Count

Remarks

Count includes only the number of Command objects you define in your Commands collection. Server or other client entries are not included.

--

Visible Property

Description

Returns or sets a value that determines whether your Commands collection’s caption appears in the character’s pop-up menu.

Syntax

agent.Characters ("CharacterID").Commands.Visible [= boolean]

Part�Description��boolean�A Boolean expression specifying whether your Commands object appears in the character’s pop-up menu.

True	The Caption for your Commands collection appears.

False	The Caption for your Commands collection does not appear.��Remarks

This property must be set to True for commands in your collection to appear in the pop-up menu when your application is input-active.

--

Voice Property

Description

Returns or sets the text that is passed to the speech engine (for recognition).

Syntax

agent.Characters ("CharacterID").Commands.Voice [= string]

Part�Description��string�A string value corresponding to the words or phrase to be used by the speech engine for recognizing this command. ��

Remarks

If you do not supply this parameter, the caption for your Commands object will not appear in the Commands Window.

The string expression you supply can include square bracket characters ([]) to indicate optional words and vertical bar characters, (|) to indicate alternative strings. Alternates must be enclosed in parentheses. For example, "(hello [there] | hi)" tells the speech engine to accept "hello," "hello there," or "hi" for the command. Remember to include appropriate spaces between the text that's in brackets or parentheses and the text that's not in brackets or parentheses.

You can also use an ellipsis (…) to support word spotting, that is, telling the speech recognition engine to ignore words spoken in this position in the phrase (sometimes called garbage words). When you use ellipses, the speech engine recognizes only specific words in the string regardless of when spoken with adjacent words or phrases. For example, if you set this property to "…check mail…", the speech recognition engine will match phrases like "please check mail" or "check mail please" to this command. Ellipses can be used anywhere within a string. However, be careful using this technique as voice settings with ellipses may increase the potential of unwanted matches.

When defining the word grammar for your command, always make sure that you include at least one word that is required; that is, avoid supplying only optional words. In addition, make sure that the word includes only pronounceable words and letters. For numbers, it is better to spell out the word than use the numeric representation. Also, omit any punctuation or symbols. For example, instead of “the #1 $10 pizza!”, use “the number one ten dollar pizza”. Including non-pronounceable characters or symbols for one command may cause the speech engine to fail to compile the grammar for all your commands. Finally, make your voice parameter as distinct as reasonably possible from other voice commands you define. The greater the similarity between the voice grammar for commands, the more likely the speech engine will make a recognition error. You can also use the confidence scores to better distinguish between two commands that may have similar or similar-sounding voice grammar.

Note	The operation of this property depends on the state of the server’s speech recognition property. For example, if speech recognition is disabled or not installed, this parameter has no effect. If speech recognition is enabled during a session, however, the command will become accessible when its client application is input-active.

--

The Command Object

A Command object is an item in a Commands collection. The server provides the user access to your Command objects when your client application becomes input-active.

To access the property of a Command object, you reference it in its collection using its Name property. In VBScript and Visual Basic you can use the Name property directly:

	agent.Characters("CharacterID").Commands("Name").property [= value]

For programming languages that don’t support collections, use the Command method:

	agent.Characters("CharacterID").Commands.Command("Name").property [= value]

You can also reference a Command object by creating a reference to it. In Visual Basic, declare an object variable and use the Set statement to create the reference:

	Dim Cmd1 as Object

	…

	Set Cmd1 = Agent.Characters("MyCharacterID").Commands("SampleCommand")

	…

	Cmd1.Enabled = True

In Visual Basic 5.0, you can also declare the object as type IAgentCtlCommand and create the reference. This convention enables early binding, which results in better performance:

	Dim Cmd1 as IAgentCtlCommand

	…

	Set Cmd1 = Agent.Characters("MyCharacterID").Commands("SampleCommand")

	…

	Cmd1.Enabled = True

In VBScript, you can declare a reference as a particular type, but you can still declare the variable and set it to the Command in the collection:

	Dim Cmd1

	…

	Set Cmd1 = Agent.Characters("MyCharacterID").Commands("SampleCommand")

	…

	Cmd1.Enabled = True

A command may appear in either the character’s pop-up menu and the Commands Window, or in both. To appear in the pop-up menu it must have a caption and have the Visible property set to True. In addition, its Commands collection object Visible property must also be set to True. To appear in the Commands Window, a Command must have its Caption and Voice properties set. Note that a character’s pop-up menu entries do not change while the menu displays. If you add or remove commands or change their properties while the character’s pop-up menu is displayed, the menu displays those changes whenever the user next displays it. However, the Commands Window dynamically reflects any changes you make.

The following table summarizes how the properties of a Command affect its presentation:

Caption Property�Voice Property �Visible Property�Enabled Property�Appears in Character’s Pop-up Menu�Appears in Commands Window��Yes�Yes�True�True�Normal�Yes��Yes�Yes�True�False�Disabled�No��Yes�Yes�False�True�Does not appear�Yes��Yes�Yes�False�False�Does not appear�No��Yes�No�True�True�Normal�No��Yes�No�True�False�Disabled�No��Yes�No�False�True�Does not appear�No��Yes�No�False�False�Does not appear�No��No�Yes�True �True�Does not appear�No*��No�Yes�True�False�Does not appear�No��No�Yes�False�True�Does not appear�No*��No�Yes�False�False�Does not appear�No��No�No�True�True�Does not appear�No��No�No�True�False�Does not appear�No��No�No�False�True�Does not appear�No��No�No�False�False�Does not appear�No��*The command is still voice-accessible.

Generally, if you define commands with Voice settings, you also define Caption and Voice settings for its associated Commands collection. If a Commands collection has no Voice or no Caption setting and is currently input-active, but its Command objects do have Caption and Voice settings and their Enabled properties are True, the Command objects appear in the Commands Window tree view under "(undefined command)" when your client application becomes input-active.

When the server receives input for one of your commands, it sends a Command event, and passes back the name of the Command as an attribute of the UserInput object. You can then use conditional statements to match and process the Command.

Command Object Properties

The following Command properties are supported:

Caption, Confidence, ConfidenceText, Enabled, Visible, Voice

Caption Property

Description

Determines the text displayed for a Command in the specified character’s pop-up menu and the Commands Window.

Syntax

agent.Characters ("CharacterID").Commands("name").Caption [= string]

Part�Description��string�A string expression that evaluates to the text displayed as the caption for the Command.��

--

Confidence Property

Description

Returns or sets whether the client’s ConfidenceText appears in the Listening Tip.

Syntax

agent.Characters ("CharacterID").Commands("name").Confidence [= number]

Part�Description��number�A numeric expression that evaluates to a Long integer that identifies confidence value for the Command.��

Remarks

If the returned confidence value of the best match (UserInput.Confidence) does not exceed value you set for the Confidence property, the text supplied in ConfidenceText is displayed in the Listening Tip.

--

ConfidenceText Property

Description

Returns or sets the client’s ConfidenceText that appears in the Listening Tip.

Syntax

agent.Characters ("CharacterID").Commands("name").ConfidenceText [= string]

Part�Description��string�A string expression that evaluates to the text for the ConfidenceText for the Command.��

Remarks

When the returned confidence value of the best match (UserInput.Confidence) does not exceed the Confidence setting, the server displays the text supplied in ConfidenceText in the Listening Tip.

--

Enabled Property

Description

Returns or sets whether the Command is enabled in the specified character’s pop-up menu.

Syntax

agent.Characters ("CharacterID").Commands("name").Enabled [= boolean]

Part�Description��boolean�A Boolean expression specifying whether the Command is enabled.

True	The Command is enabled.

False	The Command is disabled.��

Remarks

If the Enabled property is set to True, the Command object’s caption appears as normal text in the character’s pop-up menu when the client application is input-active. If the Enabled property is False, the caption appears as unavailable (disabled) text. A disabled Command is also not accessible for voice input.

--

Visible Property

Description

Returns or sets whether the Command is visible in the character’s pop-up menu.

Syntax

agent.Characters ("CharacterID").Commands("name").Visible [= boolean]

Part�Description��boolean�A Boolean expression specifying whether the Command’s caption appears in the character’s pop-up menu.

True	(Default) The caption appears.

False	The caption does not appear.��

Remarks

Set this property to False when you want to include voice input for your own interfaces without having them appear in the pop-up menu for the character. If you set a Command object’s Caption property to the empty string (""), the caption text will not appear in the pop-up menu (for example, as a blank line), regardless of its Visible property setting.

The Visible property setting of a Command object’s parent Commands collection does not affect the Visible property setting of the Command.

--

Voice Property

Description

Returns or sets the text that is passed to the speech engine grammar (for recognition) for matching this Command for the character.

Syntax

agent.Characters ("CharacterID").Commands ("name").Voice [= string]

Part�Description��string�A string value corresponding to the words or phrase to be used by the speech engine for recognizing this Command. ��

Remarks

If you do not supply this parameter, the caption for your Commands object will not appear in the Commands Window. If you specify a Voice parameter but not a Caption, the command will not appear in the Commands Window, but it will be voice-accessible when the client application becomes input-active.

Your string expression can include square bracket characters ([]) to indicate optional words and vertical bar characters (|) to indicate alternative strings. Alternates must be enclosed in parentheses. For example, "(hello [there] | hi)" tells the speech engine to accept "hello," "hello there," or "hi" for the command. Remember to include appropriate spaces between the text that's in brackets or parentheses and the text that's not in brackets or parentheses.

You can also use an ellipsis (…) to support word spotting, that is, telling the speech recognition engine to ignore words spoken in this position in the phrase (sometimes called garbage words). Therefore, the speech engine recognizes only specific words in the string regardless of when spoken with adjacent words or phrases. For example, if you set this property to "…check mail…", the speech recognition engine will match phrases like "please check mail" or "check mail please" to this command. Ellipses can be used anywhere within a string. However, be careful using this technique as it may increase the potential of unwanted matches.

When defining the word grammar for your command, always make sure that you include at least one word that is required; that is, avoid supplying only optional words. In addition, make sure that the word includes only pronounceable words and letters. For numbers, it is better to spell out the word rather than using the numeric representation. Also, omit any punctuation or symbols. For example, instead of “the #1 $10 pizza!”, use “the number one ten dollar pizza”. Including non-pronounceable characters or symbols for one command may cause the speech engine to fail to compile the grammar for all your commands. Finally, make your voice parameter as distinct as reasonably possible from other voice commands you define. The greater the similarity between the voice grammar for commands, the more likely the speech engine will make a recognition error. You can also use the confidence scores to better distinguish between two commands that may have similar or similar-sounding voice grammar.

Note	The operation of this property depends on the state of the server’s speech recognition property. For example, if speech recognition is disabled or not installed, this property has no effect.

--

The Balloon Object

Microsoft Agent supports textual captioning of spoken output using a cartoon word balloon. A character’s initial word balloon window defaults are defined and compiled in the Microsoft Agent Character Editor. Once running, the word balloon’s Enabled and Font properties may be overridden by the user. If a user changes the word balloon’s properties, they affect all characters. You can access the properties for a character’s word balloon through the Balloon object, which is a child of the Characters collection.

The Balloon object supports the following properties:

BackColor, BorderColor, CharSet, CharsPerLine, Enabled, FontName, FontBold, FontItalic, FontSize, FontStrikeThru, FontUnderline, ForeColor, NumberOfLines, Visible

BackColor Property

Description

Returns the background color currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.BackColor

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red, green, and blue, respectively. The red, green, and blue components are each represented by a number between 0 and 255 (&HFF).

--

BorderColor Property

Description

Returns the border color currently displayed for the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.BorderColor

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red, green, and blue, respectively. The red, green, and blue components are each represented by a number between 0 and 255 (&HFF).

--

CharSet Property

Description

Returns or sets the character set used for the font displayed in the specified character's word balloon.

Syntax

agent.Characters ("CharacterID").Balloon.CharSet [= value]

Part�Description��value�A integer value that specifies the character set used by the font. The following are some common settings for value:

0	Standard Windows® characters (ANSI).

1	Default character set.

2	The symbol character set.

128	Double-byte character set (DBCS) unique to the Japanese version of Windows.

129	Double-byte character set (DBCS) unique to the Korean version of Windows.

134	Double-byte character set (DBCS) unique to the Simplified Chinese version of 	Windows.

136	Double-byte character set (DBCS) unique to the Traditional Chinese version of 	Windows.

255	Extended characters normally displayed by DOS applications.

For other character set values, consult the Microsoft Win32® documentation.

��

Remarks

The default value for the character set of a character’s word balloon is set in the Microsoft Agent Character Editor. In addition, the user can override the character-set settings for all characters in the Microsoft Agent property sheet.

Note	If you are using a character that you did not compile, check the FontName and CharSet properties for the character to determine whether they are appropriate for your locale. You may need to set these values before using the Speak method to ensure appropriate text display within the word balloon.

See Also

FontName property

--

CharsPerLine Property

Description

Returns the characters per line supported for the word balloon for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.CharsPerLine

Remarks

The CharsPerLine property returns the average number of characters (letters) being displayed in the word balloon as a Long integer value.

--

Enabled Property

Description

Returns whether the word balloon is enabled for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.Enabled

Remarks

The Enabled property returns a Boolean value specifying whether the balloon is enabled by the user. True indicates the Balloon is enabled. False indicates it is not enabled (displayed).

The word balloon can also be disabled as part of a character’s definition when the character is compiled in the Microsoft Agent Character Editor. If a character is defined to not support the word balloon, this property will always be False for the character.

--

FontName Property

Description

Returns or sets the font used in the word balloon for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontName [= font]

Part�Description��font�A string value corresponding to the font's name. ��

Remarks

The FontName property defines the font used to display text in the word balloon window as a string. The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

Note	If you are using a character that you did not compile, check the FontName and CharSet properties for the character to determine whether they are appropriate for your locale. You may need to set these values before using the Speak method to ensure appropriate text display within the word balloon.

See Also

CharSet property

--

FontBold Property

Description

Returns the font style currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontBold

Remarks

The FontBold property returns a Boolean value specifying whether the font is bold. True indicates the font is bold. False indicates the font is not bold.

The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

--

FontItalic Property

Description

Returns the font style currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontItalic

Remarks

The FontItalic property returns a Boolean value specifying whether the font is italic. True indicates the font is italic. False indicates the font is not italic.

The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

--

FontSize Property

Description

Returns or sets the font size supported for the word balloon for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontSize [= points]

Part�Description��points�A Long integer value specifying the font size in points. ��

Remarks

The FontSize property returns a Long integer value specifying the current font size in points.The maximum value for FontSize is 2160 points.

The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

--

FontStrikeThru Property

Description

Returns the font style currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontStrikeThru

Remarks

The FontStrikeThru property returns a Boolean value specifying whether the font uses the strikethrough effect. True indicates the font uses the strikethrough effect. False indicates the font does not use the strikethrough effect.

The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

--

FontUnderline Property

Description

Returns the font style currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.FontUnderline

Remarks

The FontUnderline property returns a Boolean value specifying whether the font is underlined. True indicates the font is underlined. False indicates the font is not underlined.

The default value for the font settings of a character’s word balloon are set in the Microsoft Agent Character Editor. In addition, the user can override font settings for all characters in the Microsoft Agent property sheet.

--

ForeColor Property

Description

Returns the foreground color currently displayed in the word balloon window for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.ForeColor

Remarks

The ForeColor property returns a value that specifies the color of text in the word balloon. The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red, green, and blue, respectively. The red, green, and blue components are each represented by a number between 0 and 255 (&HFF).

--

NumberOfLines Property

Description

Returns the number of lines supported for the word balloon for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.NumberOfLines

Remarks

The NumberOfLines property returns the number of lines of text as a Long integer value.

--

Visible Property

Description

Returns or sets the visible setting for the word balloon for the specified character.

Syntax

agent.Characters ("CharacterID").Balloon.Visible [=boolean]

Part�Description��boolean�A Boolean expression specifying whether the word balloon is visible.

True	The balloon is visible.

False	The balloon is hidden.��

Remarks

If you attempt to set this property while the character is speaking, moving, or being dragged, the property setting does not take effect until the preceding operation is completed. Calling the Speak method automatically makes the balloon visible, setting the Visible property to True. If the character’s balloon AutoHide property is enabled, the balloon is automatically hidden after the output text is spoken. Clicking or dragging a character that is not currently speaking also automatically hides the balloon even if its AutoHide property is disabled. (A character’s word-balloon AutoHide property can only be set in the Microsoft Agent Character Editor. The property is not exposed in the API.)

--

The AudioOutput Object

The AudioOutput object provides access to audio output properties maintained by the server. The properties are read-only, but the user can change them in the Microsoft Agent property sheet.

Enabled, SoundEffects

Enabled Property

Description

Returns a Boolean indicating whether audio (spoken) output is enabled.

Syntax

agent.AudioOutput.Enabled

Remarks

When the Enabled property returns True, the Speak method produces audio output. When it returns False, it means that speech output is not installed or has been disabled by the user. Only the user can set this property value.

--

SoundEffects Property

Description

Returns a Boolean indicating whether sound effects (.WAV) files configured as part of a character’s actions will play.

Syntax

agent.AudioOutput.SoundEffects

Remarks

When the SoundEffects property returns True, sound effects included in a character’s definition will be played. When False, the sound effects will not be played. Only the user can set this property value.

The SpeechInput Object

The SpeechInput object provides access to the speech input properties maintained by the server. The properties are read-only for client applications, but the user can change them in the Microsoft Agent property sheet. The server returns values only if a compatible speech engine has been installed and is enabled.

SpeechInput Properties

If a speech recognition engine is installed and enabled, accessing these properties will start the speech engine:

Enabled, Engine, HotKey, Installed, Language, ListeningTip

Enabled Property

Description

Returns a Boolean value indicating whether speech input is enabled.

Syntax

agent.SpeechInput.Enabled

Remarks

The Enabled property reflects the state of the speech recognition engine set in the Engine property. Values for other SpeechInput properties do not change when Enabled is set to False. Querying this property raises an error if no speech engine has been installed.

Note	The user can override this property.

--

Engine Property

Description

Returns or sets the speech recognition engine that is currently selected for input.

Syntax

agent.SpeechInput.Engine [=modeID]

Part�Description��modeID�A string expression specifying the mode ID of the speech engine.��

Remarks

The Engine property takes a string value specifying the mode ID of the speech engine. Querying this property raises an error if Installed or Enabled is False.

Note	The user can override this property.

--

HotKey Property

Description

Returns a string that specifies the user’s current setting for the push-to-talk hot key.

Syntax

agent.SpeechInput.HotKey

Remarks

Querying this property raises an error if Installed or Enabled is False.

--

Installed Property

Description

Returns a Boolean that indicates whether a compatible speech engine is installed.

Syntax

agent.SpeechInput.Installed

Remarks

If no compatible speech engine has been installed, this property returns False. However, querying any other SpeechInput properties raises an error. Therefore, check this property before checking the values of the SpeechInput or CommandsWindow objects.

--

Language Property

Description

Returns a string that specifies what language is configured for speech input.

Syntax

agent.SpeechInput.Language

Remarks

This property value is set based on the selected speech recognition engine set in the Engine property. Querying this property raises an error if Installed or Enabled is False.

--

ListeningTip Property

Description

Returns a Boolean indicating whether the server displays the Listening Tip.

Syntax

agent.SpeechInput.ListeningTip

Remarks

When ListeningTip returns True, the server displays the tip window when the user presses the push-to-talk hot key. Querying this property raises an error if Installed or Enabled is False.

The CommandsWindow Object

The CommandsWindow object provides access to properties of the Commands Window. The Commands Window is a shared resource primarily designed to enable users to view voice-enabled commands. If speech recognition is disabled, the Commands Window is also disabled, but you can still read its property settings. If no speech engine is installed or if speech is disabled, querying for the CommandsWindow properties raises an error.

CommandsWindow Properties

Height, Left, Top, Visible, Width

Height Property

Description

Returns an integer value specifying the current height, in pixels, of the Commands Window.

Syntax

agent.CommandsWindow.Height

Remarks

The server displays the Commands Window based on the position and size set by the user. Querying this property raises an error if no speech engine has been installed.

--

Left Property

Description

Returns an integer value specifying the left edge, in pixels, of the Commands Window.

Syntax

agent.CommandsWindow.Left

Remarks

The server displays the Commands Window based on the position and size set by the user. Querying this property raises an error if no speech engine has been installed.

--

Top Property

Description

Returns an integer value specifying the top edge, in pixels, of the Commands Window.

Syntax

agent.CommandsWindow.Top

Remarks

The server displays the Commands Window based on the position and size set by the user. Querying this property raises an error if no speech engine has been installed.

--

Visible Property

Description

Returns or sets whether the Commands Window is visible (open).

Syntax

agent.CommandsWindow.Visible [=boolean]

Part�Description��boolean�A Boolean expression specifying whether the Commands Window is visible.

True	The window is visible.

False	The window is hidden (closed).��

Remarks

The server displays the window based on the position and size set by the user. Querying this property raises an error if no speech engine has been installed.

Note	The user can override this property.

--

Width Property

Description

Returns an integer value specifying the width, in pixels, of the Commands Window.

Syntax

agent.CommandsWindow.Width

Remarks

The server displays the Commands Window based on the position and size set by the user. Querying this property raises an error if no speech engine has been installed.

The PropertySheet Object

The PropertySheet object provides several properties you can use if you want to manipulate the character relative to the Microsoft Agent property sheet:

Height, Left, Page, Top, Visible, Width

If you query Height, Left, Top, and Width properties before the property sheet has ever been shown, their values return as zero (0). Once shown, these properties return the last position and size of the window (relative to your current screen resolution).

Height Property

Description

Returns an integer value specifying the current height, in pixels, of the Microsoft Agent property sheet window.

Syntax

agent.PropertySheet.Height

Remarks

The server displays the window based on the location set by the user.

--

Left Property

Description

Returns an integer value specifying the current left edge, in pixels, of the Microsoft Agent property sheet window.

Syntax

agent.PropertySheet.Left

Remarks

The server displays the window based on the location set by the user.

--

Page Property

Description

Returns or sets the page displayed in the Microsoft Agent property sheet window.

Syntax

agent.PropertySheet.Page [= string]

Part�Description��string�A string expression with one of the following values.

"Speech"	Displays the Speech Recognition page.

"Output"	Displays the Output page.

"Copyright"	Displays the Copyright page.��

Remarks

If no speech engine is installed, setting Page to "Speech" has no effect. Also, the window’s Visible property must be set to True for the user to see the page.

Note	The user can override this property.

--

Top Property

Description

Returns an integer value specifying the current top edge, in pixels, of the Microsoft Agent property sheet window.

Syntax

agent.PropertySheet.Top

Remarks

The server displays the window based on the location set by the user.

--

Visible Property

Description

Returns or sets whether the Microsoft Agent property sheet window is visible (open).

Syntax

agent.PropertySheet.Visible [=boolean]

Part�Description��boolean�A Boolean expression specifying whether the window is visible.

True	The window is visible.

False	The window is hidden (closed).��

Remarks

The server displays the window based on the location and size set by the user.

Note	The user can override this property.

--

Width Property

Description

Returns an integer value specifying the current width, in pixels, of the Microsoft Agent property sheet window.

Syntax

agent.PropertySheet.Width

Remarks

The server displays the window based on the location set by the user.

